skip to content

Research Information

 

Scientists identify how fasting may protect against inflammation

Research at Cambridge - Tue, 30/01/2024 - 09:55

In research published in Cell Reports, the team describes how fasting raises levels of a chemical in the blood known as arachidonic acid, which inhibits inflammation. The researchers say it may also help explain some of the beneficial effects of drugs such as aspirin.

Scientists have known for some time that our diet – particular a high calorie Western diet – can increase our risk of diseases including obesity, type 2 diabetes and heart disease, which are linked to chronic inflammation in the body.

Inflammation is our body’s natural response to injury or infection, but this process can be triggered by other mechanisms, including by the so-called ‘inflammasome’, which acts like an alarm within our body’s cells, triggering inflammation to help protect our body when it senses damage. But the inflammasome can trigger inflammation in unintentional ways – one of its functions is to destroy unwanted cells, which can result in the release of the cell’s contents into the body, where they trigger inflammation.

Professor Clare Bryant from the Department of Medicine at the University of Cambridge said: “We’re very interested in trying to understand the causes of chronic inflammation in the context of many human diseases, and in particular the role of the inflammasome.

“What's become apparent over recent years is that one inflammasome in particular – the NLRP3 inflammasome – is very important in a number of major diseases such as obesity and atherosclerosis, but also in diseases like Alzheimer's and Parkinson's disease, many of the diseases of older age people, particularly in the Western world.”

Fasting can help reduce inflammation, but the reason why has not been clear. To help answer this question, a team led by Professor Bryant and colleagues at the University of Cambridge and National Institute for Health in the USA studied blood samples from a group of 21 volunteers, who ate a 500kcal meal then fasted for 24 hours before consuming a second 500kcal meal. 

The team found that restricting calorie intake increased levels of a lipid known as arachidonic acid. Lipids are molecules that play important roles in our bodies, such as storing energy and transmitting information between cells. As soon as individuals ate a meal again, levels of arachidonic acid dropped.

When the researchers studied arachidonic acid’s effect in immune cells cultured in the lab, they found that it turns down the activity of the NLRP3 inflammasome. This surprised the team as arachidonic acid was previously thought to be linked with increased levels of inflammation, not decreased.

Professor Bryant, a Fellow of Queens’ College, Cambridge, added: “This provides a potential explanation for how changing our diet – in particular by fasting – protects us from inflammation, especially the damaging form that underpins many diseases related to a Western high calorie diet.

“It’s too early to say whether fasting protects against diseases like Alzheimer's and Parkinson's disease as the effects of arachidonic acid are only short-lived, but our work adds to a growing amount of scientific literature that points to the health benefits of calorie restriction. It suggests that regular fasting over a long period could help reduce the chronic inflammation we associate with these conditions. It's certainly an attractive idea.”

The findings also hint at one mechanism whereby a high calorie diet might increase the risk of these diseases. Studies have shown that some patients that have a high fat diet have increased levels of inflammasome activity.

“There could be a yin and yang effect going on here, whereby too much of the wrong thing is increasing your inflammasome activity and too little is decreasing it,” said Professor Bryant. “Arachidonic acid could be one way in which this is happening.”

The researchers say the discovery may also offer clues to an unexpected way in which so-called non-steroidal anti-inflammatory drugs such as aspirin work. Normally, arachidonic acid is rapidly broken down in the body, but aspirin stops this process, which can lead to an increase in levels of arachidonic acid, which in turn reduce inflammasome activity and hence inflammation.

Professor Bryant said: “It’s important to stress that aspirin should not be taken to reduce risk of long terms diseases without medical guidance as it can have side-effects such as stomach bleeds if taken over a long period.”

The research was funded by Wellcome, the Medical Research Council and the US National Heart, Lung, and Blood Institute Division of Intramural Research.

Reference
Pereira, M & Liang, J et al. Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting. Cell Reports; 23 Jan 2024; DOI: 10.1016/j.celrep.2024.113700

Cambridge scientists may have discovered a new way in which fasting helps reduce inflammation – a potentially damaging side-effect of the body’s immune system that underlies a number of chronic diseases.

Our work adds to a growing amount of scientific literature that points to the health benefits of calorie restrictionClare BryantCarol Yepes (Getty Images)Intermittent fasting conceptual image


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Religious people coped better with Covid-19 pandemic, research suggests

Research at Cambridge - Tue, 30/01/2024 - 09:21

People of religious faith may have experienced lower levels of unhappiness and stress than secular people during the UK’s Covid-19 lockdowns in 2020 and 2021, according to a new University of Cambridge study released as a working paper.

The findings follow recently published Cambridge-led research suggesting that worsening mental health after experiencing Covid infection – either personally or in those close to you – was also somewhat ameliorated by religious belief. This study looked at the US population during early 2021.

University of Cambridge economists argue that – taken together – these studies show that religion may act as a bulwark against increased distress and reduced wellbeing during times of crisis, such as a global public health emergency.

“Selection biases make the wellbeing effects of religion difficult to study,” said Prof Shaun Larcom from Cambridge’s Department of Land Economy, and co-author of the latest study. “People may become religious due to family backgrounds, innate traits, or to cope with new or existing struggles.”

“However, the Covid-19 pandemic was an extraordinary event affecting everyone at around the same time, so we could gauge the impact of a negative shock to wellbeing right across society. This provided a unique opportunity to measure whether religion was important for how some people deal with a crisis.”

Larcom and his Cambridge colleagues Prof Sriya Iyer and Dr Po-Wen She analysed survey data collected from 3,884 people in the UK during the first two national lockdowns, and compared it to three waves of data prior to the pandemic.

They found that while lockdowns were associated with a universal uptick in unhappiness, the average increase in feeling miserable was 29% lower for people who described themselves as belonging to a religion.*

The researchers also analysed the data by “religiosity”: the extent of an individual’s commitment to religious beliefs, and how central it is to their life. Those for whom religion makes “some or a great difference” in their lives experienced around half the increase in unhappiness seen in those for whom religion makes little or no difference.**

“The study suggests that it is not just being religious, but the intensity of religiosity that is important when coping with a crisis,” said Larcom.

Those self-identifying as religious in the UK are more likely to have certain characteristics, such as being older and female. The research team “controlled” for these statistically to try and isolate the effects caused by faith alone, and still found that the probability of religious people having an increase in depression was around 20% lower than non-religious people.

There was little overall difference between Christians, Muslims and Hindus – followers of the three biggest religions in the UK. However, the team did find that wellbeing among some religious groups appeared to suffer more than others when places of worship were closed during the first lockdown.

“The denial of weekly communal attendance appears to have been particularly affecting for Catholics and Muslims,” said Larcom.

For the earlier study, authored by Prof Sriya Iyer, along with colleagues Kishen Shastry, Girish Bahal and Anand Shrivastava from Australia and India, researchers used online surveys to investigate Covid-19 infections among respondents or their immediate family and friends, as well as religious beliefs, and mental health. 

The study was conducted during February and March 2021, and involved 5,178 people right across the United States, with findings published in the journal European Economic Review in November 2023.

Researchers found that almost half those who reported a Covid-19 infection either in themselves or their immediate social network experienced an associated reduction in wellbeing.

Where mental health declined, it was around 60% worse on average for the non-religious compared to people of faith with typical levels of “religiosity”.***

Interestingly, the positive effects of religion were not found in areas with strictest lockdowns, suggesting access to places of worship might be even more important in a US context. The study also found significant uptake of online religious services, and a 40% lower association between Covid-19 and mental health for those who used them.****

“Religious beliefs may be used by some as psychological resources that can shore up self-esteem and add coping skills, combined with practices that provide social support,” said Prof Iyer, from Cambridge’s Faculty of Economics.

“The pandemic presented an opportunity to glean further evidence of this in both the United Kingdom and the United States, two nations characterised by enormous religious diversity.” 

Added Larcom: “These studies show a relationship between religion and lower levels of distress during a global crisis. It may be that religious faith builds resilience, and helps people cope with adversity by providing hope, consolation and meaning in tumultuous times.”  

Two Cambridge-led studies suggest that the psychological distress caused by lockdowns (UK) and experience of infection (US) was reduced among those of faith compared to non-religious people.  

Getty/Luis AlvarezPeople in church praying with covid-19 restrictions Notes

* The increase in the mean measure for unhappiness was 6.1 percent for people who do not identify with a religion during the lockdown, compared to an increase of 4.3 percent for those who do belong to a religion – a difference of 29%.

**For those that religion makes little or no difference, the increase was 6.3 percent.  For those for whom religion makes some or a great difference, the increase was around half that, at 3 percent and 3.5 percent respectively.

*** This was after controlling for various demographic and environmental traits, including age, race, income, and average mental health rates prior to the pandemic.

**** The interpretation is from Column 1 of Table 5: Determinants of mental health, online access to religion. Where the coefficients of Covid {Not accessed online service} is 2.265 and Covid {Accessed online service} is 1.344. Hence the difference is 2.265-1.344 = 0.921 which is 40% of 2.265.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Robot trained to read braille at twice the speed of humans

Research at Cambridge - Mon, 29/01/2024 - 06:04

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

 

Reference:
Parth Potdar et al. ‘High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions.’ IEEE Robotics and Automation Letters (2024). DOI: 10.1109/LRA.2024.3356978

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

Can robots read braille? Parth PotdarRobot braille reader


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Cambridge student Giulio Regeni remembered

Research at Cambridge - Thu, 25/01/2024 - 15:57

The plaque offers a space in which colleagues and friends of the Cambridge PhD student, who studied at Girton, can pay their respects.

Giulio, an experienced researcher, was conducting fieldwork when he was abducted from the streets of Cairo on 25 January 2016, and later found murdered on 3 February 2016. The plaque unveiling marks the 8-year anniversary of his death. No one has yet been convicted of the crime.

Court officials in Rome have charged four Egyptian security officials with Giulio’s abduction, torture and murder, and a trial is due to begin in February. The College and University continue to stand in support of Giulio’s family and friends, and with Amnesty International, in their tireless efforts to uncover the truth of what happened to Giulio.

Elisabeth Kendall, Mistress of Girton College, said: “The loss of Giulio continues to cast a dark shadow over all those who knew him. Giulio was a passionate researcher with a deep sense of justice who had his whole life ahead of him before it was cruelly ended in Cairo. Justice has yet to be done. We will never stop remembering Giulio.”

Every year the College marks the anniversary by flying the College flag to half-mast in memory on 25 January and then on 3 February.

Giulio Regeni was remembered during an event at Girton College, where a plaque was unveiled in his honour.

Giulio was a passionate researcher with a deep sense of justice.Elisabeth Kendall, Mistress of Girton CollegeGirton College, University of Cambridge.Elisabeth Kendall, Mistress of Girton College, unveils the plaque honouring Giulio Regeni.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New Pro-Vice-Chancellor for Innovation appointed

Research at Cambridge - Wed, 24/01/2024 - 12:06

Dr O’Brien will take over from current Senior Pro-Vice-Chancellor Andy Neely, whose term of office finishes at the end of February. Dr O’Brien, who has a PhD in Physics from the University of Sheffield and a degree in Materials Science from Trinity College Dublin, joined Cambridge Enterprise from Trinity College Dublin, where he was Chief Innovation Officer. At Cambridge Enterprise he has led a new strategy which has supported activities such as the establishment of Innovate Cambridge, the formation of Founders at the University of Cambridge, the integration and renewal of ideaSpace and the commencement of the Technology Investment Fund to support the development of University intellectual property.

“The University and the broader Cambridge ecosystem are recognised as being globally leading for innovation, enterprise and entrepreneurship,” said Dr O’Brien.
“I have seen this first-hand from my role as Chief Executive of Cambridge Enterprise and in helping to establish Innovate Cambridge. I look forward to my new role as Pro-Vice-Chancellor for Innovation and continuing to enhance the ambition for how the University of Cambridge can enable impact from our research and through our innovation partnerships.”

He replaces Professor Andy Neely, who has served as Pro-Vice-Chancellor for Enterprise and Business Relations since March 2017, and received an OBE for services to University/Industry Collaboration in 2020. Professor Neely’s achievements as Pro-Vice-Chancellor included leading the University’s Recovery Programme helping the University respond to the coronavirus pandemic, overseeing the establishment of the Change and Programme Management Board, as well as building far stronger links with the local and regional innovation community through important initiatives such as Innovate Cambridge.

Professor Neely said: “I’m honoured to have served in this role for seven years and delighted that Diarmuid has been appointed as my successor. The University of Cambridge’s impact on the world is significantly enhanced by our engagement with business and our world-leading innovation ecosystem and I have no doubt that this will go from strength to strength under Diarmuid’s leadership”.

The University of Cambridge Vice-Chancellor Professor Deborah Prentice welcomed Dr O’Brien to the role and thanked Professor Neely for his service.

She said: “I warmly congratulate Diarmuid on being appointed to this important role. With his wealth of experience in driving innovation, most recently at Cambridge Enterprise, he will help ensure no momentum is lost in the handover from the previous Pro-Vice-Chancellor, Andy Neely.
“I would like to put on record my sincerest thanks to Andy for his service to Cambridge, both as an academic leader and as Pro-Vice-Chancellor for Enterprise and Business Relations. I know I speak on behalf of all University colleagues when I say how grateful we are for what he has achieved in that role over the past seven years.”

The Pro-Vice-Chancellor for Innovation is broadly the same role as the current Pro-Vice-Chancellor for Enterprise and Business Relations role, but with an enhanced focus on industry, enterprise and innovation.

Dr O’Brien takes up the role in April, and will remain in his current capacity at Cambridge Enterprise for one day a week to provide continuity and connection with Cambridge Enterprise.

There are five Pro-Vice-Chancellors at the University of Cambridge. Their role is to work in partnership with senior administrators to help drive strategy and policy development. The Pro-Vice-Chancellors also support the Vice-Chancellor in providing academic leadership to the University.
 

Dr Diarmuid O’Brien has been appointed as the University of Cambridge’s new Pro-Vice-Chancellor for Innovation. He is currently Chief Executive of Cambridge Enterprise, the University’s commercialisation arm which supports academics, researchers, staff and students in achieving knowledge transfer and research impact.

RMG PhotographyDr Diarmuid O’Brien


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Removing largest wine glass serving reduces amount of wine sold in bars and pubs

Research at Cambridge - Thu, 18/01/2024 - 19:00

While only modest, the finding could provide one way of nudging customers to drink less alcohol and have an impact at a population level, say the researchers.

Alcohol consumption is the fifth largest contributor to premature death and disease worldwide. In 2016 it was estimated to have caused approximately 3 million deaths worldwide.

There are many factors that influence how much we drink, from advertising to labelling to availability and cost. Previous research from the Behaviour and Health Research Unit at Cambridge has shown that even glass size can influence how much alcohol is consumed.

In research published today in PLOS Medicine, the Cambridge team carried out a study in 21 licensed premises (mainly pubs) in England to see whether removing their largest serving of wine by the glass for four weeks would have an impact on how much wine is consumed. Wine is the most commonly drunk alcoholic drink in the UK and Europe. Twenty of the premises completed the experiment as designed by the researchers and were included in the final analysis.

After adjusting for factors such as day of the week and total revenue, the researchers found that removing the largest wine glass serving led to an average (mean) decrease of 420ml of wine sold per day per venue – equating to a 7.6% decrease.

There was no evidence that sales of beer and cider increased, suggesting that people did not compensate for their reduced wine consumption by drinking more of these alcoholic drinks. There was also no evidence that it affected total daily revenues, implying that participating licensed premises did not lose money as a result of removing the largest serving size for glasses of wine, perhaps due to the higher profit margins of smaller serving sizes of wine. However, it is important to note that the study was not designed to provide statistically meaningful data on these points.

First author Dr Eleni Mantzari, from the University of Cambridge, said: “It looks like when the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wine.

“People tend to consume a specific number of ‘units’ – in this case glasses – regardless of portion size. So, someone might decide at the outset they’ll limit themselves to a couple of glasses of wine, and with less alcohol in each glass they drink less overall.”

Professor Dame Theresa Marteau, the study’s senior author and an Honorary Fellow at Christ’s College Cambridge, added: “It’s worth remembering that no level of alcohol consumption is considered safe for health, with even light consumption contributing to the development of many cancers. Although the reduction in the amount of wine sold at each premise was relatively small, even a small reduction could make a meaningful contribution to population health.”

Evidence suggests that the public prefer information-based interventions, such as health warning labels, to reductions in serving or package sizes. However, in this study, managers at just four of the 21 premises reported receiving complaints from customers.

The researchers note that although the intervention would potentially be acceptable to pub or bar managers, given there was no evidence that it can result in a loss in revenue, a nationwide policy would likely be resisted by the alcohol industry given its potential to reduce sales of targeted drinks. Public support for such a policy would depend on its effectiveness and how clearly this was communicated.

The research was funded by Wellcome.

Reference
Mantzari, E et al. Impact on wine sales of removing the largest serving size by the glass: an A-B-A reversal trial in 21 pubs, bars and restaurants in England. PLOS Medicine; DOI: 10.1371/journal.pmed.1004313

Taking away the largest serving of wine by the glass – in most cases the 250ml option – led to an average reduction in the amount of wine sold at pubs and bars of just under 8%, new research led by a team at the University of Cambridge has discovered.

When the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wineEleni Mantzarihcdeharder (Pixabay)Red and white wine in glasses


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Galaxy mergers solve early Universe mystery

Research at Cambridge - Thu, 18/01/2024 - 16:28

This has solved one of the most puzzling mysteries in astronomy – why astronomers detect light from hydrogen atoms that should have been entirely blocked by the pristine gas that formed after the Big Bang.

These new observations have found small, faint objects surrounding the galaxies that show the ‘inexplicable’ hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission. The results are reported in the journal Nature Astronomy.

Light travels at a finite speed (300 000 km a second), which means that the further away a galaxy is, the longer it has taken the light from it to reach our Solar System. As a result, not only do observations of the most distant galaxies probe the far reaches of the Universe, but they also allow us to study the Universe as it was in the past.

To study the early Universe, astronomers require exceptionally powerful telescopes that are capable of observing very distant – and therefore very faint – galaxies. One of Webb’s key capabilities is its ability to observe these galaxies, and probe the early history of the Universe.

The earliest galaxies were sites of vigorous and active star formation, and were rich sources of a type of light emitted by hydrogen atoms called Lyman-α emission. However, during the epoch of reionisation, an immense amount of neutral hydrogen gas surrounded these stellar nurseries. Furthermore, the space between galaxies was filled by more of this neutral gas than is the case today. The gas can effectively absorb and scatter this kind of hydrogen emission, so astronomers have long predicted that the abundant Lyman-α emission released in the early Universe should not be observable today.

This theory has not always stood up to scrutiny, however, as examples of early hydrogen emission have previously been observed by astronomers. This has presented a mystery: how is it that this hydrogen emission – which should have long since been absorbed or scattered – is being observed?

“One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big Bang,” said lead author Callum Witten from Cambridge’s Institute of Astronomy. “Many hypotheses have previously been suggested to explain the great escape of this ‘inexplicable’ emission.”

The team’s breakthrough came thanks to Webb’s combination of angular resolution and sensitivity. The observations with Webb’s NIRCam instrument were able to resolve smaller, fainter galaxies that surround the bright galaxies from which the ‘inexplicable’ hydrogen emission had been detected. In other words, the surroundings of these galaxies appear to be a much busier place than we previously thought, filled with small, faint galaxies.

These smaller galaxies were interacting and merging with one another, and Webb has revealed that galaxy mergers play an important role in explaining the mystery emission from the earliest galaxies.

“Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies,” said co-author Sergio Martin-Alvarez from Stanford University.

The team then used computer simulations to explore the physical processes that might explain their results. They found that the rapid build-up of stellar mass through galaxy mergers both drove strong hydrogen emission and facilitated the escape of that radiation via channels cleared of the abundant neutral gas. So, the high merger rate of the previously unobserved smaller galaxies presented a compelling solution to the long-standing puzzle of the ‘inexplicable’ early hydrogen emission.

The team is planning follow-up observations with galaxies at various stages of merging, to continue to develop their understanding of how the hydrogen emission is ejected from these changing systems. Ultimately, this will enable them to improve our understanding of galaxy evolution.

Reference:
Callum Witten et al. ‘Deciphering Lyman-α emission deep into the epoch of reionization.’ Nature Astronomy (2024). DOI: 10.1038/s41550-023-02179-3

Adapted from an ESA press release.

A team of astronomers, led by the University of Cambridge, has used the NASA/ESA/CSA James Webb Space Telescope to reveal, for the first time, what lies in the local environment of galaxies in the very early Universe.

ESA/Webb, NASA & CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zooming in on three neighbouring galaxies (NIRCam image)


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New admissions tests for 2024

Research at Cambridge - Thu, 18/01/2024 - 10:11

Cambridge and Imperial will provide two sets of tests. The Engineering and Science Admissions Test (ESAT) will be used for degree programmes in Engineering, Natural Sciences, Chemical Engineering and Biotechnology, and Veterinary Medicine at Cambridge, and Physics and most Engineering degrees at Imperial.

The Test of Mathematics for University Admission (TMUA) will be used for Economics and Computer Science degrees at Cambridge, and both the Economics, Finance and Data Science and Computing degrees at Imperial. A number of other UK universities will also use the TMUA for assessing applications for mathematically-based courses.

Pearson VUE is the certification and licensure arm of Pearson, the world’s leading learning company, providing assessment services to many institutions in the academic and admissions space. From October 2024 students will take a new computer based assessment at a Pearson VUE test centre, selecting from a global network of more than 5,500 locations in more than 180 countries. Mike Nicholson, Director of Recruitment, Admissions and Participation at Cambridge said “We are delighted to be able to provide computer based admissions tests from 2024, and in locations that take the burden off teachers and schools to act as test centres.”

Cambridge and Imperial will also be using the UCAT assessment for admission to their medical degrees from 2024, also provided through Pearson VUE, and Cambridge will continue to use the LNAT test for Law admissions.

Applicants will be required to pay an administration charge to take the tests, in line with other comparable institutions, but a fee waiver will be applied for UK-based applicants who are eligible for free school meals or who meet a number of other widening participation criteria. Nicholson added that “It is important that cost is not a barrier to participation, and the model we are using for the fee waivers has been successfully used for other admissions tests supported by Pearson”.

Lizzie Burrows, Director of Marketing, Recruitment and Admissions at Imperial said “The applicant experience is at the heart of our ambitions. With the number of applications expected to continue to rise over coming years, universities need to find ways to fairly select the best candidates while minimising the burden on our applicants.”

We hope that these tests, operating through Pearson VUE’s well established test centre network  will encourage other universities to use the TMUA and ESAT as assessments and streamline the admissions process for students.”

To attract a wider range of applicants the TMUA and ESAT will run test-sittings in mid-October 2024 and early January 2025 to reflect the two main deadlines for courses in the UCAS admissions process. Applicants to Cambridge must take the Autumn sitting.

Matthew Poyiadgi, Vice President EMEA and Asia at Pearson VUE, commented “As academic settings and admissions programmes continue to evolve in an increasingly digital world, computer-based assessments drive greater efficiencies. We look forward to collaborating with Imperial and Cambridge on this transition and supporting applicants to these world-leading universities in proving their potential.’’ 

More information can be found here.

The University of Cambridge and Imperial College London are to launch a new joint venture to deliver admissions tests for science, engineering and mathematics based degree courses. The tests, which will be delivered by global assessments leader, Pearson VUE, aim to improve the experience of students applying for highly competitive undergraduate courses while helping universities to fairly assess the skills of the brightest applicants. 

We are delighted to be able to provide computer based admissions tests from 2024Mike NicholsonSenate House


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes